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Abstract. We show that the higher moments of the evolution obtained from the modified leading logarithm
approximation may be regarded as spurious higher order terms in perturbation theory and that neglecting
them leads to a good description of the data around and above the peak in ξ = ln(1/x). Furthermore,
we use this study of the moments to show that at high energy the limiting spectrum with local parton–
hadron duality may also be derived from the modified leading logarithm approximation without any
non-perturbative assumptions.

1 Introduction

The perturbative QCD approximation is consistent with a
wide range of data. However, there are two formal limita-
tions on the predictive power of this approximation. Firstly,
perturbative QCD is incomplete in that it does not describe
the physics of hadrons entirely. Secondly, the perturbation
series becomes singular when any of the virtual and real
quarks and gluons (collectively called partons) in a pro-
cess has a configuration of energy and momenta whose
“energy scale” E, a quantity whose definition cannot be
precisely defined and which is integrated over in virtual
loops, is as small as ΛQCD, the fundamental scale of QCD
which determines the scale at which non-perturbative ef-
fects become important. For virtual partons, these two
problems are related through the factorization theorem,
which states that the dominant (leading twist) contribu-
tion to a hadronic process at high energy is given by a
convolution over dimensionless kinematic variables of pro-
cess dependent quantities describing those partons with
E greater than the factorization scale Q, which is fixed,
with process independent quantities which describe both
asymptotic hadrons and partons with E < Q. The former
quantities and the Q dependences of the latter quantities
are calculable in perturbation theory in a given factoriza-
tion scheme, which defines E, provided that Q is sufficiently
much larger than ΛQCD. Processes with real partons are
calculable in perturbative QCD provided one performs a
physical sum over these particles.

In the fixed order approach, where the perturbation
series is calculated to a finite order, the perturbative series
for a given partonic process can become divergent in certain
regions of phase space. Fortunately, the terms that cause
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the divergences in a given region are often calculable to all
orders, with the formal sum of all terms of a given class
being free of divergences in that region and forming the
term of a given order in a new series.

The hadronic and low E partonic components of pro-
cesses involving the inclusive production of hadrons are con-
tained in fragmentation functions (FF’s), which describe
the probability of transition from a high E parton a to a
low E hadron h. In this case it is valid to identify E with
the transverse momentum of each parton. The cross sec-
tion for a given process is obtained by convoluting the FF’s
with the partonic cross sections (the coefficient functions)
over the ratio z of the hadron’s longitudinal momentum to
that of the parton. The FF’s at one value of Q can be cal-
culated perturbatively from those at another value Q0 by
convoluting with the evolution matrix, which describes the
probabilities of transition from a parton at Q to another at
Q0, and which is obtained in terms of the perturbatively
calculable splitting functions by solving the DGLAP equa-
tion. However, the series for the splitting functions breaks
down as z → 0 due to terms which behave in this limit
like (αn

s /z) ln2n−1−m z, where m = 1, . . . , 2n−1 labels the
class of terms. (Terms which behave like αn

s are classified as
m = 2n.) These logarithms must be resummed before the
fixed order splitting functions are valid at small z. Since the
cross section at hadronic momentum fraction x = 2p/

√
s,

where p is the momentum of the produced hadron h and√
s is the centre-of-mass energy, depends on the FF’s over

the range x ≤ z ≤ 1, such a resummation is required
to describe the cross section at small x. Resummation of
the leading (m = 1) and subleading (m = 2) logarithms,
which appear at leading order, is obtained via the mod-
ified leading logarithmic approximation (MLLA) [1] (for
reviews see [2, 3]). Since the coefficient functions are non-
singular as z → 0, and the quark FF’s are proportional to
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the gluon FF in the MLLA, the cross section at low x is
then proportional to the MLLA evolved gluon FF.

There is some freedom to choose the MLLA evolution
due to the next-to-MLLA error. The evolution given by the
analytic solution to the MLLA differential equation [4] is
well behaved for Q0 = O(ΛQCD), which may imply that the
two limitations on perturbation theory to describe hadronic
physics that were mentioned at the beginning of this section
are too stringent. The first limitation may be weakened by
introducing the local parton–hadron duality (LPHD) hy-
pothesis [5], which states that the distribution of partons
below a certain energy scale in sufficiently inclusive pro-
cesses is similar to the distribution of hadrons, up to the
number of particles actually produced (the multiplicity).
This implies that the initial hadronic fragmentation func-
tion is proportional to the partonic fragmentation func-
tion for Q0 = O(ΛQCD). The second limitation may be
weakened by assuming that partons with E = O(ΛQCD)
may be described by perturbation theory (after resumming
with the MLLA). Together with the LPHD, the particular
choice Q0 = ΛQCD in the MLLA evolution gives the limit-
ing spectrum [5]. The only free parameters are the initial
normalization and ΛQCD, which can be fitted to the data.
A good fit to the data over the whole range of ξ = ln(1/x)
can be achieved, however only if the evolution of the nor-
malization is modified. In [6] an additional component not
provided by the MLLA was added to the normalization,
whereas in [7] a different normalization was fitted for each
value of

√
s. Otherwise ΛQCD obtained in this approach is

consistent with that of other analyses.
In our recent work [8], we studied the MLLA evolution

without using strong assumptions such as the LPHD or
the validity of the limiting spectrum, nor modifying the
MLLA evolution itself. Using an initial scale Q0 � ΛQCD
and a parameterized function for the initial gluon FF, we
achieved a good description of the charged hadron cross
section data for ξ up to and around the peak, and obtained
values of ΛQCD close to those in the literature. Beyond the
peak the MLLA evolution turned out not to be sufficient
to describe the data. The theoretical curves exhibited a
second bump after the first peak, not seen in the data,
which have a characteristic Gaussian shape around the
first peak. Such a problem cannot be solved by modifying
the MLLA normalization.

It is expected that the fixed order approach with double
and single logarithms resummed with the MLLA should
give a good description of the small to large ξ data, and
therefore, if fixed order corrections are not included, one
has to consider qualitatively what effect the fixed order
prediction at small ξ has on the MLLA prediction at large
ξ. In fact, the MLLA formally improves the description
of the Mellin transform of the cross section for small |ω|,
where ω is defined in (1), rather than the cross section itself
at large ξ. Fixed order calculations indicate that the large ξ
region has rather little dependence on the large |ω| region.

It is the purpose of this paper to consider the features of
the data that the MLLA can describe and thereby modify
the MLLA evolution in order to improve the description
of the large ξ behaviour of the spectra without spoiling
the description around the peak. We start in Sect. 2 by

considering the moments of the cross section, since these
quantities depend very little on the large |ω| behaviour of
the evolution and the parameterization of the initial gluon
FF, and can be easily extracted from the data. We then
derive our approach for improving the large ξ description.
In Sect. 3, we compare the predictions of this approach
with the experimental data at large ξ. In Sect. 4, we study
the effect of imposing the limits of the LPHD and limiting
spectrum on our approach. Finally, in Sect. 5, we present
our conclusions.

2 Evolution of moments in the MLLA

In this section we outline the features of the MLLA that
will be important for the derivation of our main result.
More details can be found in our previous publication [8];
however, to make our formulae here more transparent we
will refrain from using the variables Y = ln(Q/Q0) and
λ = ln(Q0/ΛQCD) and write Q and Q0 explicitly.

The MLLA is believed to describe the energy depen-
dence of cross sections for hadron production in the region
for which αs � 1 and |ω| = O(

√
αs), where ω replaces the

variable x in the Mellin transform

fω =
∫ ∞

0
dξ exp[−ωξ]xf(x) . (1)

In this limit the cross section is proportional to the gluon
FF D(x, Q) at the conventional choice of factorization scale
Q =

√
s/2. The dependence of the gluon FF on Q in Mellin

space takes the simple form

Dω(Q) = Eω(αs(Q), αs(Q0))Dω(Q0) , (2)

where Dω(Q0) is non-perturbative, while Eω is determined
in terms of the gluon splitting function γω(αs),

Eω(αs(Q), αs(Q0)) = exp

[∫ Q

Q0

d lnµ γω(αs(µ))

]
. (3)

From the MLLA, the double and single logarithmic con-
tribution to γω(αs) reads

γω(αs) =
1
2

(
−ω +

√
ω2 + 4γ2

0

)

+
αs

2π

[
b

γ2
0

ω2 + 4γ2
0

− a

2

(
1 +

ω√
ω2 + 4γ2

0

)]

+O

((αs

ω

)3
)

, (4)

where αs(Q) is calculated at one loop order and depends on
the number of flavours Nf , γ2

0 = 4Ncαs/(2π) for Nc = 3
colours, a = 11Nc/3 + 2Nf/(3N2

c ) and b = 11Nc/3 −
2Nf/3. As is usual in applications of the MLLA, we choose
Nf = 3. Equation (4) is an expansion of γω in αs/ω keeping
αs/ω2 fixed. The first line is of order αs/ω, and is obtained
from the double logarithm approximation (DLA), while
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the second is the MLLA correction of O
(
(αs/ω)2

)
. The

O
(
(αs/ω)3

)
error is the unknown next-to-MLLA correc-

tion. Since (4) reduces to a finite series in
√

αs at ω = 0,
the MLLA should also be a good approximation in the
region |ω|, √αs � 1 if the next-to-MLLA corrections in
this region are of higher order in

√
αs.

One is interested in determiningwhat improvements the
MLLA makes to the cross section in x space. This quantity
can be obtained from the inverse Mellin transform, given by

xD(x, Q) =
1

2πi

∫
C

dω exp[ωξ]Dω(Q) , (5)

where the contour C may be taken to be a straight line
from ω = ω0 − i∞ to ω = ω0 + i∞, where ω0 is real
and to the right of all singularities in Dω(Q). Actually, the
small ξ dependence of D(x, Q) is largely determined by Eω

at large |ω|, which is described by the fixed order result.
Coincidentally, the MLLA also leads to a good description
of the small ξ region, since γω in (4) becomes negative at
large |ω| like the fixed order result. On the other hand,
as ξ → ∞ the contribution from the |ω| < O(

√
αs) region

becomes increasingly relevant, and may eventually become
dominant since the evolution of the cross section calculated
in the fixed order approach falls off rapidly at large |ω| due
to the − ln |ω| behaviour of the anomalous dimensions to
all orders. However, γω in (4) only approaches a constant,
−aαs/(2π), at large |ω|, so it cannot be expected that this
approach to the MLLA gives a good description at large
ξ. There is no guarantee that there exists some suitable
choice for the large |ω| behaviour of Dω(Q0) which can
remedy this problem with the evolution.

Therefore we require an evolution which approximates
the MLLA well in the |ω| < O(

√
αs) region and which

falls off sufficiently fast at large |ω| such that the small |ω|
region gives the dominant contribution to the cross section
at large ξ. For this purpose we will study the MLLA in
terms of the moments Kn of the gluon FF, where

Kn(Q) =
(

− d
dω

)n

lnDω(Q)
∣∣∣∣
ω=0

, (6)

since the first few moments (n finite) depend very little
on the behaviour of the evolution at large |ω|. The K
moments completely determine Dω(Q), since (6) may be
inverted using Taylor’s theorem to give, formally,

lnDω =
∞∑

n=0

Kn(−ω)n

n!
. (7)

Note that the K moments may be expressed in terms of
the normalized ξ moments, 〈ξn〉, which from (1) can be
calculated using

〈ξn〉 =
1

D0

(
− d

dω

)n

Dω

∣∣∣∣
ω=0

. (8)

From (2) and (6), the moments of the gluon FF evolve as

Kn(Q) = Kn(Q0) + ∆Kn(αs(Q), αs(Q0)) , (9)

where ∆Kn is defined to be the nth K moment of the
evolution Eω, and so the K moments have the additional
advantages that their MLLA evolution is independent of
Dω(Q0) and that they each evolve independently of one
another. This definition of ∆Kn together with (3) implies

∆Kn(αs(Q), αs(Q0))

=
∫ Q

Q0

d lnµ

(
− d

dω

)n

γω(αs(µ))
∣∣∣∣
ω=0

. (10)

Explicitly, (4) and (10) for n ≥ 1 give

∆Kn(αs(Q), αs(Q0))

= α
− n+1

2
s (Q)

(
C(0)

n + C(1)
n α

1
2
s (Q) + O (αs)

)
−{αs(Q) ↔ αs(Q0)

}
, (11)

where the O (αs) error refers to unknown next-to-MLLA
corrections, while the C

(0,1)
n are completely determined and

are presented in [9] for the first few values of n. In fact, for
n ≥ 3 and odd, C

(0)
n = 0. Equation (11) also applies for

n = 0, but ∆K0 also contains a term proportional to lnαs.
For small |ω|, Eω(αs(Q), αs(Q0)) may be approxi-

mated by

lnEω(αs(Q), αs(Q0)) =
M∑

n=0

∆Kn(αs(Q), αs(Q0))(−ω)n

n!
(12)

with M finite. This corresponds to evolving the moments
Kn for n ≤ M exactly as in the full unexpanded case, but
fixing the remaining K moments to be equal to Kn(Q0).
Since the coefficient C

(0)
n in (11) for n even is positive

when n/2 is odd and negative when n/2 is even, then in
the region where the imaginary part of ω is large, if M ≥ 2
and even, Q and Q0 are large and Q0 < Q, we obtain the
fast decrease

Eω → exp

[
−
∣∣∆KMωM

∣∣
M !

]
. (13)

If M is odd, the Mth term in (12) just produces an oscil-
lation, in which case the replacement M → M − 1 in (13)
must be made.

It remains to be found whether (12) agrees well with the
approach of (2) to (4) in the whole region |ω| < O(

√
αs).

In the extreme case |ω| = O(
√

αs), (11) implies

ωn∆Kn = O
(
α

− 1
2

s

)
, (14)

so that all terms in the series in (12) become of similar
magnitude. Such a series may still converge, or oscillate
with an average value equal to the unexpanded result. In
any case, we see that the accuracy of (12) to reproduce
the MLLA contribution to the cross section cannot be
reliably determined in Mellin space. Therefore we will try to
determine what the suppression of higher moments means
in x space. For this purpose, it will be convenient to work
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with the moments N , ξ, σ2 and κn for n = 3, . . . ,∞,
defined by

N = D0, ξ = 〈ξ〉, σ2 = 〈(ξ − ξ
)2〉 ,

κ3 =
〈(ξ − ξ

)3〉
σ3 , κ4 =

〈(ξ − ξ
)4〉

σ4 − 3 ,

κn =
〈(ξ − ξ

)n〉
σn

(n ≥ 5) . (15)

Note that κ3 is often written as s and κ4 as k. From (6)
and (8), these moments are related to the K moments by

K0 = lnN, K1 = ξ, K2 = σ2 ,

Kn = σnκn (n ≥ 3) . (16)

To obtain an expression for some function D(x) in terms
of the κn, we first make the replacement y = iωσ in (5),
which yields

xD(x) =
N

σ
√

2π
exp

[
− δ2

2

]
R(δ, {κn}) , (17)

where δ = (ξ − ξ)/σ and the real quantity R is given by

R(δ, {κn}) (18)

=
eδ2/2
√

2π

∫ ∞

−∞
dy exp

[ ∞∑
n=3

κn
(−iy)n

n!

]
exp

[
iyδ − y2

2

]
.

Note that R is equal to unity when all the κn vanish.
We therefore see that a function depends on its moments
Kn for n ≥ 3 only through the ratios κn = Kn/σn. To
calculate (17) to a given accuracy when the κn are small,
we expand the κn dependent exponential in (18) in powers
of the κn up to the required accuracy and perform the
integral for each term. R is then rewritten as an exponential
of the form

R = exp

[ ∞∑
i=0

Aiδ
i

]
, (19)

where eachAi vanisheswhen all theκn vanish.Now suppose
the κn are sufficiently small such that it is valid to expand
the Ai in the κn for n ≤ M up to some finite order, and
neglect the moments κn for n > M . In this case ln R as
a series in δ will terminate at some finite order, hence the
argument of the exponential in (19) is not an expansion
in δ, since the approximation is valid even if δ is of O(1).
For example, including the complete contribution from all
terms of O(s), O(k), O(s2), O(k2), O(sk), O(κ5) and O(κ6)
in lnR gives

xD(x) =
N

σ
√

2π

× exp
[

1
8

k − 1
2

sδ − 1
4

(2 + k) δ2 +
1
6

sδ3 +
1
24

kδ4

− 5
24

s2 +
1
12

k2 − 1
48

κ6 +
(

1
8

κ5 − 2
3

sk

)
δ

+
(

1
2

s2 − 1
3

k2 +
1
16

κ6

)
δ2 +

(
− 1

12
κ5 +

7
12

sk

)
δ3

+
(

− 1
8

s2 +
7
48

k2 − 1
48

κ6

)
δ4 (20)

+
(

1
120

κ5 − 1
12

sk

)
δ5 +

(
− 1

72
k2 +

1
720

κ6

)
δ6
]

.

We now return to hadron production cross sections in
the MLLA. In x space, (2) becomes

xD(x, Q) =
∫ 1

x

dz

z

x

z
E
(x

z
, αs(Q), αs(Q0)

)
zD(z, Q0) ,

(21)
where E(z, αs(Q), αs(Q0)) is the inverse Mellin transform
of Eω(αs(Q), αs(Q0)). From (16), the κ moments of
zE(z, αs(Q), αs(Q0)), κE

n (αs(Q), αs(Q0)), obey (omitting
arguments for brevity)

κE
n =

∆Kn

(∆K2)
n
2

. (22)

We may use (11) to expand κE
n (αs(Q), αs(Q0)) as a series

in αs(Q) keeping αs(Q0) fixed, giving

κE
n (αs(Q), αs(Q0)) ∝ α

n−2
4

s (Q)
[
1 + O

(
α

1
2
s (Q)

)]
. (23)

Therefore we may treat the κE
n as small, in which case E

takes the form of (17),

zE(z, αs(Q), αs(Q0)) (24)

=
NE

σE
√

2π
exp

[
−
(
δE(z)

)2
2

]
RE(δE(z), {κE

n }) ,

where δE(z) = (ln(1/z) − ξ
E

)/σE . Equation (23) and the
discussion after (19) show that when lnRE is expanded in
αs(Q) while δE(z) is fixed, the higher moments serve only to
contribute spurious higher order terms to this series. Such
terms give a large theoretical error, since they contribute
unstable “noise”, as canbe seenbyperforming the evolution
on a smooth function. Discarding these terms gives an
evolution in which the higher moments of the gluon FF are
fixed with respect to Q, in other words (12).

Similarly, the κ moments of D(x, Q) obey

κn(Q) =
Kn(Q0) + ∆Kn(αs(Q), αs(Q0))

[K2(Q0) + ∆K2(αs(Q), αs(Q0))]
n
2

. (25)

At sufficiently large Q, ∆Kn(αs(Q), αs(Q0)) � Kn(Q0), so
that, from (22) and (25), κn(Q) may be approximated by
κE

n (αs(Q), αs(Q0)), and hence may be treated as small.
Thus if Q0 is sufficiently large, xD(x, Q0) may be pa-
rameterized as a distorted Gaussian around the average
value of ξ.

3 Fitting to data

Since the evolution of the first few K moments is indepen-
dent of the approach used (e.g. the approach of (2) to (4) or
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Fig. 1. Simultaneous fit of the initial mo-
ments and ΛQCD to all of the experimental
data moments calculated in [6], by evolving
the moments in the MLLA

Table 1. Simultaneous fit of ΛQCD and the moments ln N , ξ,
σ2, K3 and K4 at Q0 = 14/2 GeV to the same moments of the
data from [6]. χ2

DF = 3.7

ln N ξ σ2 K3 K4 ΛQCD (MeV)
2.00 2.09 0.40 0.05 −0.19 411 ± 36

the approach of (12)) and the parameterization of the non-
perturbative input, the ability of the MLLA to describe
the data in principle can be determined by comparison to
the moments of the data, assuming that fixed order cor-
rections can be neglected. We perform a single fit of ΛQCD
and the initial Kn with Q0 = 14/2 GeV to the Kn of the
experimental data at various

√
s by setting Q =

√
s/2 and

evolving in the MLLA as in (10). We use the moments
calculated in [6], which are presented in the form N , ξ, σ2,
s and k, from which we extract the first five K moments,
and their errors are obtained by differentiating and adding
in quadrature. The results are shown in Table 1 and Fig. 1.
The error on ΛQCD in Table 1 and in all other tables in
this paper is obtained by inverting the correlation matrix,
which is identified with the matrix of second derivatives. In
Fig. 1, we see that the first three moments are fitted very
well, however there is a marginal disagreement of K3 and
K4 with the data which may result from either an inability
of the MLLA to describe these higher K moments or from
the inaccuracy involved in obtaining these moments from
the experimental data, in which case the true experimental
error would be larger than that shown. We also perform a
fit directly to the basis of moments used in [6], and found
no significant change in the values of the initial parameters,

and the theoretical curves for s and k deviated seriously
from the data below

√
s ≈ 25 GeV.

These results strongly suggest that there exists some
approach to applying the MLLA and some parameteriza-
tion of the non-perturbative components that gives a good
description of the data over a large range in ξ. In the follow-
ing three subsections we perform fits directly to the data
points at different ξ using various approaches. In Sect. 3.1,
we evolve the moments, place them in a distorted Gaussian
and compare with the data at different ξ. In Sects. 3.2 and
3.3, we evolve in Mellin space using (12), with two dif-
ferent parameterizations of the non-perturbative input: In
Sect. 3.2 we parameterize the initial distribution xD(x, Q0)
such that its higher moments are exactly zero but the
remaining moments are left as free parameters, while in
Sect. 3.3 we parameterize the initial distribution as a dis-
torted Gaussian (the first two lines of (20)) so that the
higher moments are small. In order to avoid the small ξ
region, where fixed order effects are important and where
the data have a high accuracy, we follow [7] and use only
those data for which

ξ > 0.75 + 0.33 ln(
√

s) (26)

but impose no upper limit in ξ on the data.

3.1 Evolution of moments
as distorted Gaussian parameters

While the data tend to follow the shape of a distorted
Gaussian well, the distorted Gaussian evolved with the
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approach of (2) to (4) does not – in [8], the theoretical
curves exhibited two bumps. Therefore we constrain the
evolved xD(x, Q) to follow a distorted Gaussian,

xD(x, Q) =
N ′

σ′√2π
(27)

× exp
[

1
8

k′ − 1
2

s′δ′ − 1
4

(2 + k′) δ′2 +
1
6

s′δ′3 +
1
24

k′δ′4
]

,

with δ′ = (ξ − ξ
′
)/σ′, where the parameters N ′, ξ

′
, σ′, k′

and s′ depend on Q. Since these parameters are approx-
imately equal to the corresponding unprimed quantities
defined in (15), we choose their Q dependences to be the
same, i.e. that obtained from (10) and (16). By comparing
xD(x, Q) calculated in this way with the data at different
ξ and

√
s, we fit the initial K ′

n(Q0) = K ′
n for n ≤ 5, as well

as ΛQCD, with the choice Q0 = 14/2 GeV. A similar ap-
proach was applied in [7]; however, the limiting spectrum
formulae for the moments were used, and ΛQCD, the peak
position of the data and the normalization of the data for
each

√
s were fitted. We use TASSO data at

√
s =14, 22,

35 and 44 GeV [10], TPC [11] and MARK II [12] data at
29 GeV, TOPAZ data at 58 GeV [13], ALEPH [14], DEL-
PHI [15], L3 [16], OPAL [17] and SLD [18] data at 91 GeV,
ALEPH [19] and OPAL [20] data at 133 GeV, DELPHI data
at 161 GeV [21], OPAL data at 172, 183 and 189 GeV [22]
and OPAL data at 202 GeV [7]. The results are shown in
Table 2, and some of the data with the corresponding fitted
theoretical curves are shown in Fig. 2. (In all plots in this
paper, each curve is shifted up from the curve below by
0.8 for clarity.) The fit is excellent around the peak and
above, but poor below the peak region, where fixed order
effects are important. In particular, the curves show that
the MLLA alone predicts the evolution of the normaliza-
tion very well at large ξ, in contrast to other analyses. This
procedure has a number of features that differ from that
used in [8]. The evolution used there coincidentally shares
similar properties at large |ω| with the fixed order result,
and hence a good fit was obtained with the data below
the peak while a large disagreement was found above the
peak. However, no properties of the evolution used for the
fit of Table 2 are shared with the fixed order result be-
low the peak, and only the first five moments are evolved
while the remaining moments are held fixed (within the
accuracy of the distorted Gaussian approximation). To en-
sure that the deviation below the peak was not due to
the lack of data being fitted there, a fit using all data for
which ξ < ln(

√
s/20.5 GeV) was performed, giving a bad

fit everywhere. In particular since the parameters try to
fit to the accurate data below the peak, a large initial |K4|
was obtained.

Table 2. Simultaneous fit of ΛQCD and the moments ln N ′, ξ
′
,

σ′2, K′
3 and K′

4 at Q0 = 14/2 GeV to the data in x space by
evolving them in the MLLA and placing them in a distorted
Gaussian. χ2

DF = 2.4

ln N ′ ξ
′

σ′2 K′
3 K′

4 ΛQCD (MeV)
2.41 2.07 0.91 −0.58 −0.66 59 ± 4
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Fig. 2. Global fit by using a distorted Gaussian in which the
moments are evolved in the MLLA. The lower limits of the
data used, given by (26), are indicated by vertical dotted lines.
Each curve is shifted up by 0.8 for clarity

3.2 Mellin space parameterization and evolution

We now constrain the initial distribution such that Kn = 0
exactly for n ≥ 7. From (7), this means that the parame-
terization of the initial distribution in Mellin space must
take the form

lnDω(Q0) =
6∑

n=0

Kp(Q0)(−ω)n

n!
. (28)

We perform fits to TASSO data at 14 GeV and OPAL
data at 91 and 202 GeV, cut according to (26), and evolve
according to (12) with Q0 = 14/2 GeV. Taking M = 2,
4 and 6, we obtain the results shown in Tables 3, 4, and
5, respectively. Note that using M = 4 gives the lowest
χ2

DF. For the case M = 6, we get a large result for κ6,
since although ∆K6(αs(Q), αs(Q0)) becomes positive for
Q → ∞, for the data used ∆K6 is negative. This is due
to the MLLA term being larger than the DLA term, so it
may be the case that corrections beyond the MLLA are
required for this quantity, or some other approach. At any
rate, from the end of Sect. 2, ∆K6 contributes spurious
higher order terms and should be neglected, and this is
confirmed in Table 5.

Table 3. Simultaneous fit of N , ξ, σ2, s, k, κ5, κ6 and ΛQCD

to TASSO data at 14 GeV and OPAL data at 91 and 202 GeV,
with only the first three moments evolved according to the
MLLA. χ2

DF = 1.14

N ξ σ2 s k κ5 κ6 ΛQCD (MeV)
10.90 2.40 1.05 0.05 0.54 0.09 0.19 66 ± 10
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Table 4. As in Table 3, but with only the first five moments evolved
according to the MLLA. χ2

DF = 0.60

N ξ σ2 s k κ5 κ6 ΛQCD (MeV)
10.58 2.15 0.79 −0.79 −0.40 −0.73 −2.44 81 ± 11

Table 5. As in Table 3, but with only the first seven moments evolved
according to the MLLA. χ2

DF = 0.77

N ξ σ2 s k κ5 κ6 ΛQCD (MeV)
10.06 1.80 0.474 −4.86 2.00 −1.17 113.57 96 ± 1
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Fig. 3. Fit of the distorted Gaussian parameters and ΛQCD to
TASSO data at 14 GeV and OPAL data at 91 and 202 GeV,
with only the first five moments evolved according to the MLLA

3.3 Distorted Gaussian with Mellin space evolution

In global analyses, the initial FF’s are parameterized in x,
and the parameters are fitted to the data by evolving the
FF’s in Mellin space in the fixed order approach. For this
reason, in [8] the initial gluon FF was parameterized as a
distorted Gaussian and evolved using the approach of (2)
to (4). We repeat this approach here, but instead we will
apply MLLA evolution in the form of (12). First we repeat
the fits of Sect. 3.2. The results for the case M = 2 and
M = 4 are shown in Tables 6 and 7, respectively. Note
again that using M = 4 gives the best fit. The resulting
curves for the M = 4 case are shown in Fig. 3. The case
M = 6 cannot be tested since, as we found in Sect. 3.2,
∆K6 is negative for the data used, so that the integral
for the inverse Mellin transform does not converge. Fits
in which data for all ξ are used generally give a bad fit
everywhere except at values of ξ beyond the peak, which
is due in part to the high accuracy of the data at small ξ.
As anticipated from the fit of Table 2, excellent agreement
is found around and above the peak region.

0 1 2 3 4 5 6 7
ξ

0

5

10

15

x/
σ 

dσ
/d

x

OPAL 202
OPAL 172
OPAL 133
OPAL 91
TOPAZ 58
TASSO 44
TASSO 35
TPC 29
TASSO 14

Fig. 4. Global fit with only the first five moments evolved
according to the MLLA

We now perform a fit to all the data, using M = 4 in
the evolution. The results are shown in Table 8 and Fig. 4,
and are the main results of this paper.

Table 6. Simultaneous fit of N ′, ξ
′
, σ′2, s′, k′ and ΛQCD to

TASSO data at 14 GeV and OPAL data at 91 and 202 GeV,
with only the first three moments evolved according to the
MLLA. χ2

DF = 1.67

N ′ ξ
′

σ′2 s′ k′ ΛQCD (MeV)
10.51 2.22 1.17 −0.71 1.18 86 ± 1

Table 7. As in Table 6, but with only the first five moments
evolved according to the MLLA. χ2

DF = 0.65

N ′ ξ
′

σ′2 s′ k′ ΛQCD (MeV)
10.75 2.12 0.92 −0.65 −0.22 77 ± 10

Table 8. Global fit with only the first five moments evolved
according to the MLLA. χ2

DF = 2.7

N ′ ξ
′

σ′2 s′ k′ ΛQCD (MeV)
10.39 1.90 1.10 −1.45 −0.09 114 ± 6
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In all our approaches, reasonably consistent values of
ΛQCD were obtained of around 100 MeV. The small ξ region
was generally not well described; however, this region is
outside the scope of the MLLA and requires fixed order
corrections. It is generally found that the best fit is obtained
with M = 4, although with other values of M we also
obtained good fits around and above the peak.

4 The LPHD and limiting spectrum limits

In this section we show how the LPHD and limiting spec-
trum arise from the high energy limit of the MLLA, re-
gardless of any assumptions around the non-perturbative
region. This study is independent of the main results of
this paper but uses a natural and obvious extension of the
approach we have been discussing.

From (11), ∆Kn(αs(Q), αs(Q0)) → ∞ as Q → ∞, so
that for sufficiently large Q the initial Kn(Q0) in (9) may
be neglected. However, such an approximation should not
be made for n = 0, since the cross section is very sensitive
to the initial lnN . Therefore, data at sufficiently large Q
should be reasonably well described with a starting distri-
bution of the form xD(x, Q0) = Nδ(1 − x). Thus, from a
purely perturbative analysis, we see that the LPHD arises
because the perturbative components form the dominant
contribution to the cross section. In this sense, the LPHD
follows from the MLLA rather than being an additional as-
sumption.

For sufficiently large Q, any term of O(α−n
s (Q0)) with n

positive can be neglected relative to a term of O(α−n
s (Q)),

so that from (11), we may replace ∆Kn(αs(Q), αs(Q0))
with ∆Kn(αs(Q), ∞). This can be artificially achieved by
setting Q0 = ΛQCD, since then αs(Q0) = ∞ as a conse-
quence of the perturbative approximation. Thus the limit-
ing spectrum also follows from the MLLA. However, it is im-
portant to note that the ∆Kn(αs(Q), ∞) for n sufficiently
small would not be finite if corrections of next-to-MLLA
or higher were included.

To summarize, a simple analysis of the MLLA shows
that, at sufficiently large Q, the assumptions of the LPHD
and the limiting spectrum will appear to be correct, since
the cross section may be calculated with (9) approximated
for n ≥ 1 by

Kn(Q) ≈ ∆Kn(αs(Q), ∞) . (29)

However, the only essential difference between our proce-
dure and that of the LPHD with the limiting spectrum is
that we do not allow for any assumptions on the size of
the initial ξ and σ2, we only assume that the initial κn

are small. We now study what the effects of these ad-
ditional constraints are, by using (29) for n ≥ 1. The
normalization N(Q), which from (9) obeys lnN(Q) =
lnN(Q0) + ∆K0(αs(Q), αs(Q0)), is independent of Q0.
Thus our predictions will be exactly independent of Q0, and
the theory contains just two free parameters, ΛQCD and
N = N(Q0), where Q0 is implicitly chosen such that the
αs(Q0) dependent part of ∆K0(αs(Q), αs(Q0)) vanishes
(this does not occur at Q0 = ΛQCD, where the series for
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Fig. 5. Global fit to data with the LPHD and limiting spectrum,
and with only the first three moments evolved

K0 is singular due to the term proportional to ln(αs(Q0))).
We fit the two parameters to all available data. We find
that the data above the cut are best described when the cut
is chosen as in (26) but with ∆ξ = +1 added to the right
hand side. Fitting a different normalization for each

√
s of

the data does not improve the fit significantly. For M = 4 in
the evolution, we obtain N = 7.68±0.02, ΛQCD = 446±2
and χ2

DF = 9.3, while for M = 2 we obtain N = 6.64±0.02,
ΛQCD = 292 ± 1 GeV and χ2

DF = 3.74. The resulting plots
are shown in Fig. 5 for the M = 2 case. (The M = 4 fit
gives similar curves.) With these results we are able to
calculate the moments at Q = 14/2 GeV, and find reason-
able agreement with our previous results for N , ξ and σ2

(e.g. that of Table 8). The evolution of these quantities
follows the data, as is to be expected since we are using the
same evolution as we used in the fit of, e.g., Table 8. How-
ever, it is clear that the prediction at and below the peak
is significantly dependent on the initial values of ξ and
σ. Comparing with other analyses which use the LPHD
with the limiting spectrum, we see that the data above
the peak are well described, with no modifications to the
normalization, while the data below the peak are not.

To properly test the physical assumptions which imply
the LPHD and limiting spectrum requires a comparison
with data in the regionQ = O(ΛQCD). In fact, a comparison
has been made for the moments down to energies as low as
3 GeV [6], with good agreement (we have not considered
these data sets since there is insufficient data around and
above the peak in ξ). The LPHD and limiting spectrum
can therefore be regarded as a statement about how low
in energy (29) remains a valid approximation.

5 Conclusions

In [8], it was shown that a naive application of the MLLA
without additional assumptions gives a good description
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of data around the peak region, but not beyond. Since the
evolution used approached a constant at large |ω|, while
the fixed order approach implies that the evolution falls
to zero, the contribution to the cross section at large ξ
from the cross section at small |ω| was underestimated.
This qualitative feature of the fixed order approach can be
taken into account by using the limiting spectrum, which
decreases fast at large |ω|. In this paper, we found that this
feature can also be taken into acount by suppressing the
evolution of the higher moments. This does not affect the
approximation since, by studying the MLLA in x space,
one can see that it is formally justified to neglect their
evolution in the perturbative approximation. In addition,
at sufficiently large Q, one finds from the MLLA that the
spectrum acquires a distorted Gaussian shape. Fixing the
higher moments and using a distorted Gaussian for the
initial distribution at Q0 = 14/2 GeV resulted in a good
description of all data for which

√
s ≥ 14 GeV from just

below the peak to the largest value of ξ, and we obtained
ΛQCD ≈ 100 GeV. In obtaining these results, we used a
non-perturbative input that was determined empirically
at a low scale, rather than from physical arguments such
as those of the LPHD.

Furthermore, we showed that the cross section ap-
proaches that of the limiting spectrum at sufficiently large
Q. We stress that this follows from the MLLA, without ad-
ditional hypotheses, so that the assumptions of the LPHD
and limiting spectrum can only be validated by study-
ing data around Q = O(ΛQCD). In practice, imposing the
limiting spectrum limit on the evolution with suppressed
moments and imposing the LPHD on the initial distribu-
tion gives a poor description up to the peak. However,
a good description is obtained beyond the peak without
requiring any modification to the normalization, and the
best fit, where M = 2, resulted in ΛQCD = 292 GeV, which
is consistent with other analyses.

Finally, the region of the data used in global fits may be
extended to lower values of x (large ξ) by incorporating the
MLLA into the fixed order calculations. This would allow
for a better determination of the FF’s, particularly at small
momentum fractions, as well as more constraints on ΛQCD.
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